首页 | 本学科首页   官方微博 | 高级检索  
     


Binding energy and diamagnetic susceptibility of an on-center hydrogenic donor impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire
Authors:Gh. Safarpour  M. BaratiM. Moradi  S. DavatolhaghA. Zamani
Affiliation:Department of Physics, College of Science, Shiraz University, Shiraz 71454, Iran
Abstract:The binding energy and diamagnetic susceptibility of an on-center hydrogenic donor impurity in an InAs spherical quantum dot placed at the center of a GaAs cylindrical nano-wire have been investigated using finite element method in the framework of the effective mass approximation. The binding energy and diamagnetic susceptibility are calculated as a function of the dot radius, nano-wire radius and nano-wire height. The results show that as the dot radius increases (I) for a dot radius smaller than some critical value, the effect of the spherical confinement on the energy levels becomes negligible and the energies remain constant, for a dot radius larger than some specific value, the energy levels decrease (II) the ground and the first excited state binding energies increase, reach a maximum and then decrease (III) the ground state diamagnetic susceptibility increases, reach a maximum and then decreases (IV) the first excited state diamagnetic susceptibility increases, indicating two maxima and then decreases. The effects of the nano-wire dimensions on the binding energy and diamagnetic susceptibility have also been studied. We found that the binding energy and diamagnetic susceptibility decrease reach a minimum value and then increase as the nano-wire radius increases. Finally we found that as the height of the nano-wire increases the ground state binding energy decreases, reaches a minimum value and then increases but the first excited state binding energy decreases and reaches a constant value.
Keywords:Spherical quantum dot   Nano-wire   Binding energy   Diamagnetic susceptibility   Hydrogenic donor impurity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号