首页 | 本学科首页   官方微博 | 高级检索  
     


Photochemie von in 4-Stellung substituierten 5-Methyl-3-phenyl-isoxazolen.44. Mitteilung über Photoreaktionen
Authors:Kurt Dietliker  Paul Gilgen  Heinz Heimgartner  Hans Schmid
Abstract:Photochemistry of 4-substituted 5-Methyl-3-phenyl-isoxazoles. 4-Trideuterioacetyl-5-methyl-3-phenyl-isoxazole ([CD3CO]- 27 ), upon irradiation with 254 nm light, was converted into a 1:1 mixture of oxazoles [CD3CO]- 35 and [CD3]- 35 (Scheme 13). This isomerization is accompagnied by a slower transformation of ([CD3CO]- 27 ) into [CD3]- 27 . Irradiation of the isoxazole derivatives 28, 29, 30 and (E)- 31 yielded only oxazoles 36, 37, 38 and (E), (Z)- 39 ; no 4-acetyl-5-alkoxy-2-phenyl-oxazole, 2-acetyl-3-methyl-5-phenyl-pyrrole or 2-acetyl-4-methoxycarbonyl-3-methyl-5-phenyl-pyrrole, respectively, were formed (Scheme 9 and 10). Similarly (E)- 32 gave a mixture of (E), (Z)- 40 only (Scheme 11). Upon shorter irradiation, the intermediate 2H-azirines (E), (Z)- 41 could be isolated (Scheme 11). Photochemical (E)/(Z)-isomerization of the 2-(trifluoro-ethoxycarbonyl)-1-methyl-vinyl side chain in all the compounds 32, 40 and 41 is fast. At 230° the isoxazoles (E)- and (Z)- 32 are converted into oxazoles (E), (Z)- 40 . The same compounds are also obtained by thermal isomerization of the 2H-azirines (E), (Z)- 41 . The most probable mechanism for the photochemical transformations of the isoxazoles, as exemplified in the case of the isoxazole 27 , is shown in Scheme 13. A benzonitrile-methylide intermediate is postulated for the photochemical conversion of the 2H-azirines into oxazoles. 2H-Azirines are also intermediates in the thermal isoxazole-oxazole rearrangement. It is however not yet clear, if the thermal 2H-azirine-oxazole transformation involves the same transient species as the photochemical reaction. A mechanism for the photochemical isomerization of the 2H-azirine 11 to the oxazole 15 is proposed (Scheme 3).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号