首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase-resolved flow characteristics between two shrouded co-rotating disks
Authors:R F Huang  M K Hsieh
Institution:(1) Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10672, Taiwan, Republic of China
Abstract:Flow characteristics in the interdisk midplane between two shrouded co-rotating disks were experimentally studied. A laser-assisted particle-laden flow-visualization method was used to identify the qualitative flow behaviors. Particle image velocimetry was employed to measure the instantaneous flow velocities. The flow visualization revealed rotating polygonal flow structures (hexagon, pentagon, quadrangle, triangle, and oval) existing in the core region of the interdisk spacing. There existed a difference between the rotating frequencies of the polygon and the disks. The rotating frequency ratio between the polygonal flow structure and the disks depended on the mode shapes of the polygonal core flow structures—0.8 for pentagon, 0.75 for quadrangle, 0.69 for triangle, and 0.6 for oval. The phase-resolved flow velocities relative to the bulk rotation speed of the polygonal core flow structure were calculated, and the streamline patterns were delineated. It was found that outside the polygonal core flow structure, there existed a cluster of vortex rings—each side of the polygon was associated with a vortex ring. The radial distributions of the time-averaged and phase-resolved ensemble-averaged circumferential and radial velocities were presented. Five characteristic regions (solid-body rotation region, hub-influenced region, buffer region, vortex region, and shroud-influenced region) were identified according to the prominent physical features of the flow velocity distributions in the interdisk midplane. In the solid-body rotation region, the fluid rotated at the angular velocity of the disks and hub. In the hub-influenced region, the circumferential flow velocity departed slightly from the disks’ angular velocity. The circumferential velocities in the hub-influenced and vortex regions varied linearly with variation of radial coordinates. The phase-resolved ensemble-averaged relative radial velocity profiles in the interdisk midplane at various phase angles exhibited grouping behaviors in three ranges of polygon phase angles (θ = 0 and α/2, 0 < θ < α/2, and α/2 < θ < α) because three-dimensional flow induced similar flow patterns to appear in the same range of polygon phase angles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号