首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Understanding migratory flow caused by helicoid wire spacers in rod bundles: An experimental and theoretical study
Institution:Faculty of Applied Sciences, Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, Delft, 2629 JB, Netherlands
Abstract:The core of a Liquid Metal Fast Breeder Reactor (LMFBR) consists of cylindrical fuel rods that are wrapped by a helicoidally-wound wire spacer to enhance mixing and to prevent damage by fretting. It is known that the liquid metal close to the rod is forced to follow the wires, and that liquid metal further away from the rod crosses the wires (called: migratory flow). This work aims at gaining more insight into the physics behind migratory flow and to provide a model for its bending angle. To this purpose, the flow field in a 7-rods, wire-wrapped, hexagonal bundle with water is studied within the Reynolds number range of 4990–16330 by using Particle Image Velocimetry (PIV). Refraction of the light is minimized by using Fluorinated Ethylene Propylene (FEP), which is a refractive index-matching (RIM) material. These measurements confirm that liquid near the rod follows the helicoid path and bends cross-wise with respect to the wire further away from the rod. A theoretical model for the bending angle of the flow is derived from the Euler equations and shows that the bending is primarily caused by the pressure gradient field induced by the wire. The model shows a very good correspondence with the experimentally obtained PIV data. These findings improve our understanding of the physics at play in rod bundle flows with wrapped wires and can be of assistance in developing practical correlations for frictional pressure losses and heat transfer in such bundles.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号