首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Generalized Conditional Gradient Method for Dynamic Inverse Problems with Optimal Transport Regularization
Authors:Bredies  Kristian  Carioni  Marcello  Fanzon  Silvio  Romero  Francisco
Institution:1.Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, 8010, Graz, Austria
;2.Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
;
Abstract:

We develop a dynamic generalized conditional gradient method (DGCG) for dynamic inverse problems with optimal transport regularization. We consider the framework introduced in Bredies and Fanzon (ESAIM: M2AN 54:2351–2382, 2020), where the objective functional is comprised of a fidelity term, penalizing the pointwise in time discrepancy between the observation and the unknown in time-varying Hilbert spaces, and a regularizer keeping track of the dynamics, given by the Benamou–Brenier energy constrained via the homogeneous continuity equation. Employing the characterization of the extremal points of the Benamou–Brenier energy (Bredies et al. in Bull Lond Math Soc 53(5):1436–1452, 2021), we define the atoms of the problem as measures concentrated on absolutely continuous curves in the domain. We propose a dynamic generalization of a conditional gradient method that consists of iteratively adding suitably chosen atoms to the current sparse iterate, and subsequently optimizing the coefficients in the resulting linear combination. We prove that the method converges with a sublinear rate to a minimizer of the objective functional. Additionally, we propose heuristic strategies and acceleration steps that allow to implement the algorithm efficiently. Finally, we provide numerical examples that demonstrate the effectiveness of our algorithm and model in reconstructing heavily undersampled dynamic data, together with the presence of noise.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号