首页 | 本学科首页   官方微博 | 高级检索  
     


Microporous polyurethanes: Synthesis and investigation of the mechanism of the pore formation
Authors:P. Deepa  M. Jayakannan
Abstract:A new approach for microporous polymeric material is developed utilizing the secondary interactions such as hydrogen bonding in the polymer chains in polyurethane systems at ambient conditions. A new series of highly rigid, thermally stable, and readily soluble cycloaliphatic polyurethanes were designed and synthesized for this purpose, based on new tricyclodecanedimethanol and 1,4‐cyclohexanedimethanol. The hydrogen‐bonding interactions induce phase separation in solution, which leads to polymer‐rich and solvent‐rich domains; subsequent evaporation of the solvent molecules results in micropores. The phase‐separation process in the polyurethane is found to be highly dependent on the chemical structures of the polymer chain backbone. 1H NMR titration experiments were carried out to understand the mechanism of the micropore formation and its dependence on different structural subunits. The hydrogen‐bonding association constant (K) obtained from the titration experiments revealed that higher the K‐value more the tendency to form micropores. A fully cycloaliphatic polyurethane produces micropores of sizes ranging from 1 to 8 μm, and each pore is separated by 10?20 μm, whereas the replacement of one of the cyclic unit in the backbone disturbs the entire phase‐separation process and results in nonporous morphology. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1296–1308, 2006
Keywords:morphology  polyurethanes  self‐organization  thermal properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号