首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inorganic–organic nanocomposites of polybenzoxazine with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane
Authors:Yonghong Liu  Sixun Zheng
Abstract:Octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) was used to prepare the polybenzoxazine (PBA‐a) nanocomposites containing polyhedral oligomeric silsesquioxane (POSS). The crosslinking reactions involved with the formation of the organic–inorganic networks can be divided into the two types: (1) the ring‐opening polymerization of benzoxazine and (2) the subsequent reaction between the in situ formed phenolic hydroxyls of PBA‐a and the epoxide groups of OpePOSS. The morphology of the nanocomposites was investigated by means of scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Differential scanning calorimetry and dynamic mechanical analysis showed that the nanocomposites displayed higher glass‐transition temperatures than the control PBA‐a. In the glassy state, the nanocomposites containing less than 30 wt % POSS displayed an enhanced storage modulus, whereas the storage moduli of the nanocomposites containing more than 30 wt % POSS were lower than that of the control PBA‐a. The dynamic mechanical analysis results showed that all the nanocomposites exhibited enhanced storage moduli in the rubbery states, which was ascribed to the two major factors, that is, the nanoreinforcement effect of POSS cages and the additional crosslinking degree resulting from the intercomponent reactions between PBA‐a and OpePOSS. Thermogravimetric analysis indicated that the nanocomposites displayed improved thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1168–1181, 2006
Keywords:nanocomposites  polybenzoxazine  polyhedral oligomeric silsesquioxane  thermal properties  thermsets
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号