首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unified elastoplastic finite difference and its application
Authors:Zong-yuan MA  Hong-jian LIAO  Fa-ning DANG
Institution:1. School of Civil Engineering and Architecture, Xi'an University of Technology,5 South Jinhua Road, Xi'an 710048, P.R.China
2. Department of Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road,Xi'an 710049, P.R.China
Abstract:Two elastoplastic constitutive models based on the unified strength theory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which includes an associated/non-associated flow rule, strain-hardening/softening, and solutions of singularities. Those two constitutive models are appropriate for metallic and strength-different (SD) materials, respectively. Two verification examples are used to compare the computation results and test data using the two-dimensional finite difference code FLAC and the finite element code ANSYS, and the two constitutive models proposed in this paper are verified. Two application examples, the large deformation of a prismatic bar and the strain-softening behavior of soft rock under a complex stress state, are analyzed using the three-dimensional code FLAC3D. The two new elastoplastic constitutive models proposed in this paper can be used in bearing capacity evaluation or stability analysis of structures built of metallic or SD materials. The effect of the intermediate principal stress on metallic or SD material structures under complex stress states, including large deformation, three-dimensional and non-association problems, can be analyzed easily using the two constitutive models proposed in this paper.
Keywords:elastoplastic constitutive model  unified strength theory  explicit finite difference  effect of intermediate principal stress
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号