首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature-dependent energy gap of the primary charge separation in photosystem I: study of delayed fluorescence at 77-268 K
Authors:Shibata Yutaka  Akai Shinpei  Kasahara Takashi  Ikegami Isamu  Itoh Shigeru
Institution:Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan. yshibata@bio.phys.nagoya-u.ac.jp
Abstract:The dynamics of fluorescence decay and charge recombination were studied in the ether-extracted photosystem I reaction center isolated from spinach with picosecond resolution over a wide time range up to 100 ns. At all temperatures from 268 to 77 K, a slow fluorescence decay component with a 30-40 ns lifetime was detected. This component was interpreted as a delayed fluorescence emitted from the singlet excited state of the primary donor P700*, which is repopulated through charge recombination that was increased by the lack of secondary acceptor phylloquinone in the sample. Analysis of the fluorescence kinetics allowed estimation of the standard free-energy difference -DeltaG between P700* and the primary radical pair (P700(+)A0(-)) state over a wide temperature range. The values of -DeltaG were estimated to be 160/36 meV at 268/77 K, indicating its high sensitivity to temperature. A temperature-dependent -DeltaG value was also estimated in the delayed fluorescence of the isolated photosystem I in which the secondary acceptor quinone was partially prereduced by preillumination in the presence of dithionite. The results revealed that the temperature-dependent -DeltaG is a universal phenomenon common with the purple bacterial reaction centers, photosystem II and photosystem I reaction centers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号