首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of various phases in liquids from the hypersound velocity and damping near closed phase-separation regions of solutions
Authors:K. V. Kovalenko  S. V. Krivokhizha  I. A. Chaban  L. L. Chaikov
Affiliation:(1) Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991, Russia;(2) Andreev Acoustic Institute, Moscow, 117036, Russia
Abstract:Theoretical analysis revealed that experimental results obtained in our studies on hypersound propagation in a guaiacol-glycerol solution in the vicinity of the closed phase-separation region, double critical point, and special point, as well as the origin of these regions, can be explained by the presence of two different phases (I and II) of the solution with phase-transition temperature T 0. Temperature T 0 coincides with the temperature at the center of closed phase-separation regions, as well as with the double critical point and with the special point. In (Frenkel) phase I, molecules are in potential wells whose depth exceeds the thermal energy of a molecule, while thermal energy in (gaslike) phase II is higher than the potential well depth. At the lower critical point, the thermodynamic potential of phase I is equal to the thermodynamic potential of the phase-separated solution. At the upper critical point, the thermodynamic potential of phase II is equal to the thermodynamic potential of the phase-separated solution. The observed broad dome of the hypersound absorption coefficient near T 0 can be explained by the contribution associated with fluctuations of the order parameter corresponding to the transition from phase I to phase II. The difference in the temperature coefficients of hypersound velocity on different sides of T 0 and some other effects are also explained.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号