首页 | 本学科首页   官方微博 | 高级检索  
     


Encapsulation of Silver Nanoparticles in an Amine‐Functionalized Porphyrin Metal–Organic Framework and Its Use as a Heterogeneous Catalyst for CO2 Fixation under Atmospheric Pressure
Abstract:A new porphyrin‐based compound, [Zn3(C40H24N8)(C20H8N2O4)2(DEF)2](DEF)3 ( 1 ; DEF=N,N‐diethylformamide), has been synthesized by employing 5,10,15,20‐tetrakis(4‐pyridyl)porphyrin, 1,2‐diamino‐3,6‐bis(4‐carboxyphenyl)benzene, and Zn2+ salt at 100 °C under solvothermal conditions. The structure, as determined by single‐crystal XRD studies, is three‐dimensional with threefold interpenetration. The usefulness of free −NH2 groups in the ligand was exploited for anchoring silver nanoparticles through a simple solution‐based route. The silver‐loaded sample, Ag@ 1 , was characterized by powder XRD, energy‐dispersive X‐ray spectroscopy, high‐resolution TEM, SEM, X‐ray photoelectron spectroscopy, and inductively coupled plasma MS analysis, which clearly indicated that silver nanoparticles with a size of 3.83 nm were uniformly distributed within the metal–organic framework (MOF). The Ag@ 1 sample was evaluated for possible catalytic activity for the carboxylation of a terminal alkyne by employing CO2 under atmospheric pressure; this gave excellent results. The Ag@ 1 catalyst was found to be robust, active, and recyclable. The present studies suggest that porphyrin MOFs not only exhibit interesting structures, but also show good heterogeneous catalytic activity towards the fixation of CO2.
Keywords:heterogeneous catalysis  metal–  organic frameworks  nanoparticles  porphyrinoids  silver
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号