首页 | 本学科首页   官方微博 | 高级检索  
     


Diruthenium Complexes of p‐Benzoquinone–Imidazole Hybrid Ligands: Innocent or Noninnocent Behavior of the Quinone Moiety
Abstract:After double deprotonation, 2,6‐diaryl‐p‐benzoquinonodiimidazoles (aryl=4‐tolyl ( I ) or 2‐pyridyl ( II )) were shown to bridge two [Ru(bpy)2]2+ (bpy=2,2‐bipyridine) complex fragments through the imidazolate N and p‐quinone O ( I → 1 2+) or through the imidazolate N and pyridyl N donor atoms ( II → 2 2+). Characterization by crystal structure analysis, 1H/13C NMR spectroscopy, cyclic and differential pulse voltammetry, and spectroelectrochemistry (UV/Vis/NIR, IR, EPR) in combination with TD‐DFT calculations revealed surprisingly different electronic structures for redox systems 1 n and 2 n. Whereas 1 2+ is reduced to a radical complex with considerable semiquinone character, the reduction of 2 2+ with its exclusive N coordination exhibits little spin on the now redox‐innocent quinone moiety, compared with the electron uptake by the pyridyl–imidazolate chelating site. The first of two close‐lying oxidation processes occurs at the bridging heteroquinone ligand, whereas the second oxidation is partly ( 1 4+) or predominantly ( 2 4+) centered on the metal atoms.
Keywords:density functional calculations  heterocycles  quinones  ruthenium  spectroelectrochemistry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号