首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of different immobilization strategies on chiral recognition properties of Cinchona‐based anion exchangers
Abstract:In the enantiomeric separation of highly polar compounds, a traditionally challenging task for high‐performance liquid chromatography, ion‐exchange chiral stationary phases have found the main field of application. In this contribution, we present a series of novel anion‐exchange‐type chiral stationary phases for enantiomer separation of protected amino phosphonates and N‐protected amino acids. Two of the prepared selectors possessed a double and triple bond within a single molecule. Thus, they were immobilized onto silica support employing either a thiol‐ene (radical) or an azide‐yne (copper(I)‐catalyzed) click reaction. We evaluated the selectivity and the effect of immobilization proceeding either by the double bond of the Cinchona alkaloid or a triple bond of the carbamoyl moiety on the chromatographic performance of the chiral stationary phases using analytes with protecting groups of different size, flexibility, and π‐acidity. The previously observed preference toward protecting groups possessing π‐acidic units, which is a typical feature of Cinchona‐based chiral stationary phases, was preserved. In addition, increasing the bulkiness of the selectors’ carbamoyl units leads to significantly reduced retention times, while very high selectivity toward the tested analytes is retained.
Keywords:chiral anion exchange  chiral stationary phases  click‐chemistry immobilization  enantiomer separation  N‐protected amino acids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号