首页 | 本学科首页   官方微博 | 高级检索  
     


Accelerated SDS depletion from proteins by transmembrane electrophoresis: Impacts of Joule heating
Abstract:SDS plays a key role in proteomics workflows, including protein extraction, solubilization and mass‐based separations (e.g. SDS‐PAGE, GELFrEE). However, SDS interferes with mass spectrometry and so it must be removed prior to analysis. We recently introduced an electrophoretic platform, termed transmembrane electrophoresis (TME), enabling extensive depletion of SDS from proteins in solution with exceptional protein yields. However, our prior TME runs required 1 h to complete, being limited by Joule heating which causes protein aggregation at higher operating currents. Here, we demonstrate effective strategies to maintain lower TME sample temperatures, permitting accelerated SDS depletion. Among these strategies, the use of a magnetic stir bar to continuously agitate a model protein system (BSA) allows SDS to be depleted below 100 ppm (>98% removal) within 10 min of TME operations, while maintaining exceptional protein recovery (>95%). Moreover, these modifications allow TME to operate without any user intervention, improving throughput and robustness of the approach. Through fits of our time‐course SDS depletion curves to an exponential model, we calculate SDS depletion half‐lives as low as 1.2 min. This promising electrophoretic platform should provide proteomics researchers with an effective purification strategy to enable MS characterization of SDS‐containing proteins.
Keywords:Automation  Intact proteins  Joule heating  SDS depletion  Top‐down proteomics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号