首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative aqueous attenuated total reflectance Fourier transform infrared spectroscopy : Part II. Integrated molar absorptivities of alkyl carboxylates
Authors:Paul R. Pike   Pamela A. Sworan  Stephen E. Cabaniss
Affiliation:

Department of Chemistry, Kent State University, Kent, OH 44242 USA

Abstract:A quantitative attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopic method is developed for the analysis of total carboxylate concentration, [COO], in aqueous solution. The short (12–13 μm) and highly reproducible pathlength of the ATR cell permits quantitative subtraction of the water peak at 1640 cm−1. Carboxylate quantitation is based on the area of the asymmetric stretching peak, which is nearly independent of compound structure. The molar absorptivity of alkyl carboxylates in water is 438 ± 58 l mol−1 cm−1, and the integrated molar absorptivity is 2.95 ± 0.08 × 104 l mol−1 cm−2 (n = 15 compounds, 0.1 M ≤ [COO] ≤ 1.5 M). The [COO] in solutions of mixed carboxylates is measured with a root mean square error of 2.4% and a small (+1.5) positive bias. The accuracy of the method is limited by the assumption that integrated absorbance is constant for all COO groups.
Keywords:Infrared spectrometry   Alkyl carboxylates   Aqueous solutions   Quantitative analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号