首页 | 本学科首页   官方微博 | 高级检索  
     


Vibrational spectra of triiodomesitylene: combination of DFT calculations and experimental studies. Effects of the environment
Authors:Meinnel Jean J  Boudjada Ali  Boucekkine Abdou  Boudjada Fahima  Moréac Alain  Parker Stewart F
Affiliation:Laboratoire Sciences Chimiques de Rennes, UMR CNRS 6226, Universite de Rennes 1, 35042 Rennes, France.
Abstract:A study of the internal vibrations of triiodomesitylene (TIM) is presented. It is known from X-rays diffraction at 293 K that the molecule has nearly D(3h) symmetry because of the large delocalization of the methyl protons. By using Raman and infrared spectra recorded at room temperature, a first assignment is done by comparing TIM vibrations with those of 1,3,5-triiodo- and 1,3,5-trimethyl-benzene. This assignment is supported by DFT calculations by using the MPW1PW91 functional with the LanL2DZ(d,p) basis set and assuming C(3h) symmetry. The agreement between the calculated and experimental frequencies is very good: always better than 97% for the observed skeletal vibrations. The calculations overestimate the methyl frequencies by 7%, and experiment shows only broad features for these excitations. Because a neutron diffraction study had established that the TIM conformation at 14 K is not exactly trigonal, new theoretical calculations were done with C(s) symmetry. This shows that all previous E' and E' modes of vibration are split by 2-12 cm(-1). This is confirmed by infrared, Raman, and inelastic neutron scattering spectra recorded below 10 K. Apart from two frequencies, all the TIM skeleton vibrations have been detected and assigned by using C(s) symmetry. For the methyl vibrations, experiment has confirmed the splitting of the previously degenerate modes; only some small discrepancies remain in the assignment. This is partly due to the difference of the model conformation used in the calculations and the crystallographic one. All these results confirm that each of the three methyl groups has not only its own tunnel splitting but also a different specific spectroscopic behavior for all the molecular modes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号