首页 | 本学科首页   官方微博 | 高级检索  
     检索      


L-arginine trifluoroacetate salt bridges in its solid state compound: the low-temperature three dimensional structural determination of L-arginine bis(trifluoroacetate) crystal and its vibrational spectral analysis
Authors:Sun Z H  Sun W M  Chen C T  Zhang G H  Wang X Q  Xu D
Institution:Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China. sunzhihua@icm.sdu.edu.cn
Abstract:Structural varieties of L-arginine trifluoroacetate (abbreviated as LATF) and L-arginine bis(trifluoroacetate), LABTF, in the solid state compounds were observed and analyzed by the nuclear magnetic resonance (NMR) spectroscopy. The guanidinium-carboxylate interaction plays an important role involving in the crystal structure construction. Conformational changes of L-Arg(+) and L-Arg(2+) cations result from the intrinsic structural difference by hydrogen bonding and electrostatic interactions. The low-temperature structure of its crystalline salt, L-arginine bis(trifluoroacetate), was determined to describe the hydrogen bonding interactions. In comparison with the crystal structure at room temperature, the low-temperature L-Arg(2+) cations present tiny conformational difference and the rotational disorder of CF(3) group disappears. FT-IR and Raman spectra were investigated and hydrogen bonding interactions were analyzed on the basis of its vibrational spectra. Results indicate that this type interaction is greatly contributive to the structural features and vibrational spectral properties.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号