首页 | 本学科首页   官方微博 | 高级检索  
     


Study of magnetically enhanced corona pre-charger
Affiliation:Department of Environmental Science and Engineering, Northeast Normal University, Changchun 130024, China
Abstract:In this paper, experimental investigations of the discharge characteristics of magnetically enhanced corona discharges, for the purpose of capturing fine aerosol particles, are presented. The discharge mechanism during such a process is analyzed as well. The effects of magnetic enhancement under different magnet flux densities, and in positive- or negative-corona discharges, were experimentally compared. The magnetically enhanced effects in different inter-electrode regions were studied. Experimental results demonstrated that the magnetic field could efficiently increase the concentrations of both the negative ions and the free electrons during negative-corona discharge. The dominant mechanism of magnetic enhancement in a corona discharge involves the Larmor precessions of free electrons which enhance ionization of the gas molecules near the discharge electrode. A convenient configuration for enhancing corona discharge was formed by placing permanent magnets with a local strong magnetic field near the discharge electrode. A magnetically enhanced negative-corona (MNC) pre-charger was assembled in front of an electrostatic enhancement filter. The influence of the MNC pre-charger on the efficiencies of an electrostatic enhancement filter was measured and compared with that of a conventional corona pre-charger. The free-electron-charging mechanism of the MNC pre-charger was preliminarily analyzed. Our results show that the new pre-charging technique is promising for capturing fine aerosol particles in electrostatic enhancement filters or electrostatic precipitators.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号