首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism of the transition-metal-catalyzed hydroarylation of bromo-alkynes revisited: hydrogen versus bromine migration
Authors:Huang Genping  Cheng Bing  Xu Liang  Li Yahong  Xia Yuanzhi
Institution:College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
Abstract:A comprehensive mechanistic study of the InCl(3)-, AuCl-, and PtCl(2)-catalyzed cycloisomerization of the 2-(haloethynyl)biphenyl derivatives of Fürstner et al. was carried out by DFT/M06 calculations to uncover the catalyst-dependent selectivity of the reactions. The results revealed that the 6-endo-dig cyclization is the most favorable pathway in both InCl(3)- and AuCl-catalyzed reactions. When AuCl is used, the 9-bromophenanthrene product could be formed by consecutive 1,2-H/1,2-Br migrations from the Wheland-type intermediate of the 6-endo-dig cyclization. However, in the InCl(3)-catalyzed reactions, the chloride-assisted intermolecular H-migrations between two Wheland-type intermediates are more favorable. These Cl-assisted H-migrations would eventually lead to 10-bromophenanthrene through proto-demetalation of the aryl indium intermediate with HCl. The cause of the poor selectivity of the PtCl(2) catalyst in the experiments by the Fürstner group was predicted. It was found that both the PtCl(2)-catalyzed alkyne-vinylidene rearrangement and the 5-exo-dig cyclization pathways have very close activation energies. Further calculations found the former pathway would lead eventually to both 9- and 10-bromophenanthrene products, as a result of the Cl-assisted H-migrations after the cyclization of the Pt-vinylidene intermediate. Alternatively, the intermediate from the 5-exo-dig cyclization would be transformed into a relatively stable Pt-carbene intermediate irreversibly, which could give rise to the 9-alkylidene fluorene product through a 1,2-H shift with a 28.1 kcal mol(-1) activation barrier. These findings shed new light on the complex product mixtures of the PtCl(2)-catalyzed reaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号