首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks
Authors:Morris William  Volosskiy Boris  Demir Selcuk  Gándara Felipe  McGrier Psaras L  Furukawa Hiroyasu  Cascio Duilio  Stoddart J Fraser  Yaghi Omar M
Institution:Center for Reticular Chemistry, Center for Global Mentoring, and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA.
Abstract:Three new metal-organic frameworks MOF-525, Zr(6)O(4)(OH)(4)(TCPP-H(2))(3); MOF-535, Zr(6)O(4)(OH)(4)(XF)(3); MOF-545, Zr(6)O(8)(H(2)O)(8)(TCPP-H(2))(2), where porphyrin H(4)-TCPP-H(2) = (C(48)H(24)O(8)N(4)) and cruciform H(4)-XF = (C(42)O(8)H(22))] based on two new topologies, ftw and csq, have been synthesized and structurally characterized. MOF-525 and -535 are composed of Zr(6)O(4)(OH)(4) cuboctahedral units linked by either porphyrin (MOF-525) or cruciform (MOF-535). Another zirconium-containing unit, Zr(6)O(8)(H(2)O)(8), is linked by porphyrin to give the MOF-545 structure. The structure of MOF-525 was obtained by analysis of powder X-ray diffraction data. The structures of MOF-535 and -545 were resolved from synchrotron single-crystal data. MOF-525, -535, and -545 have Brunauer-Emmett-Teller surface areas of 2620, 1120, and 2260 m(2)/g, respectively. In addition to their large surface areas, both porphyrin-containing MOFs are exceptionally chemically stable, maintaining their structures under aqueous and organic conditions. MOF-525 and -545 were metalated with iron(III) and copper(II) to yield the metalated analogues without losing their high surface area and chemical stability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号