首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrodynamic-flow-driven phase evolution in a polymer blend film modified by diblock copolymers
Authors:J. Rysz  H. Ermer  A. Budkowski  A. Bernasik  J. Lekki  G. Juengst  R. Brenn  K. Kowalski  J. Camra  M. Lekka  J. Jedliński
Affiliation:Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Kraków, Poland, PL
Fakult?t für Physik, Universit?t Freiburg, H.-Herder-Str. 3, 79104 Freiburg i. Br., Germany, DE
Surface Spectroscopy Laboratory, University of Mining and Metallurgy, Mickiewicza 39, 30-059 Kraków, Poland and Joint Centre for Chemical Analysis and Structural Research, Jagellonian University, Reymonta 23, 30-059 Kraków, Poland, PL
Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Kraków, Poland, PL
Abstract:We have studied surface-directed phase separation in thin films of deuterated polystyrene and poly(bromostyrene) (with 22.7% of monomers brominated) using 3He nuclear reaction analysis, dynamic secondary ion mass spectroscopy and atomic force microscopy combined with preferential dissolution. The crossover from competing to neutral surfaces of the critical blend film (cast onto Au) was commenced: polyisoprene-polystyrene diblock copolymers were added and segregated to both surfaces reducing in a tuneable manner the effective interactions. Two main stages of phase evolution are characterised by i) the growth of two surface layers and by ii) the transition from the four-layer to the final bilayer morphology. For increasing copolymer content the kinetics of the first stage is hardly affected but the amplitude of composition oscillations is reduced indicating more fragmented inner layers. As a result, a faster mass flow to the surfaces and an earlier completion of the second stage were observed. The hydrodynamic flow mechanism, driving both stages, is evidenced by nearly linear growth of the surface layer and by mass flow channels extending from the surface layer into the bulk. The final bilayer structure, formed even for the surfaces covered by strongly overlapped copolymers, is indicative of long-range (antisymmetric) surface forces. Received 15 March 2000 and Received in final form 9 February 2001
Keywords:PACS. 64.75.+g Solubility, segregation, and mixing   phase separation –   68.55.-a Thin film structure and morphology
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号