首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Radiolysis-Induced Oxidation of Bovine α-Crystallin
Authors:Eric L Finley  James Dillon  Rosalie K Crouch  Kevin L Schey
Institution:Departments of Cellular and Molecular Pharmacology and Experimental Therapeutics;Ophthalmology, Medical University of South Carolina, Charleston, SC, USA;Department of Ophthalmology, Columbia University, New York, NY, USA
Abstract:Abstract— Radiolysis of water by ionizing radiation results in the production of pure hydroxyl radicals. This technique, combined with analysis by tandem mass spectrometry (MS/MS), has been used to study the effect of hydroxyl radicals on the intact bovine α-crystallin protein. After exposure to -γ-irradiation, the oxidized α-crystallin was digested with trypsin and the resulting peptides were fractionated by reverse-phase HPLC. The isolated fractions were analyzed by matrix-assisted laser desorption ionization and by MS/MS to determine the locations and identities of the modifications. Structural analysis revealed that methionine 1 of αA- and αB-crystallin and methionine 68 of αB-crystallin were oxidized to methionine sulfoxide. Hydroxytryptophan was formed from each tryptophan residue in α-crystallin, although only tryptophan 9 of αA-crystallin was converted into N-for-mylkynurenine. This study has, for the first time, identified the sites of modification and the structures produced in the intact α-crystallin protein by exposure to hydroxyl radicals. By determining the consequences of in vitro exposure of α-crystallin to pure hydroxyl radicals, the in vivo contribution of this reactive oxygen species to the overall oxidative stress of the lens will be achieved from the identification of the modifications to α-crystallin purified from intact human lenses.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号