首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamical mean-field theory for molecules and nanostructures
Authors:Turkowski Volodymyr  Kabir Alamgir  Nayyar Neha  Rahman Talat S
Institution:Department of Physics, University of Central Florida, Orlando, Florida 32816, USA. vturkows@ucf.edu
Abstract:Dynamical mean-field theory (DMFT) has established itself as a reliable and well-controlled approximation to study correlation effects in bulk solids and also two-dimensional systems. In combination with standard density-functional theory (DFT), it has been successfully applied to study materials in which localized electronic states play an important role. It was recently shown that this approach can also be successfully applied to study correlation effects in nanostructures. Here, we provide some details on our recently proposed DFT+DMFT approach to study the magnetic properties of nanosystems V. Turkowski, A. Kabir, N. Nayyar, and T. S. Rahman, J. Phys.: Condens. Matter 22, 462202 (2010)] and apply it to examine the magnetic properties of small FePt clusters. We demonstrate that DMFT produces meaningful results even for such small systems. For benchmarking and better comparison with results obtained using DFT+U, we also include the case of small Fe clusters. As in the case of bulk systems, the latter approach tends to overestimate correlation effects in nanostructures. Finally, we discuss possible ways to further improve the nano-DFT+DMFT approximation and to extend its application to molecules and nanoparticles on substrates and to nonequilibrium phenomena.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号