首页 | 本学科首页   官方微博 | 高级检索  
     


Ab initio study of the torsional potential energy surfaces of N2O3 and N2O4: origin of the torsional barriers
Authors:Halpern Arthur M  Glendening Eric D
Affiliation:Department of Chemistry, Indiana State University, Terre Haute, IN 47809, USA.
Abstract:Intrinsic reaction coordinate (IRC) torsional potentials were calculated for N(2)O(4) and N(2)O(3) based on optimized B3LYP/aug-cc-pVDZ geometries of the respective 90 degrees -twisted saddle points. These potentials were refined by obtaining CCSD(T)aug-cc-pVXZ energies [in the complete basis set (CBS) limit] of points along the IRC. A comparison is made between these ab initio potentials and an analytical form based on a two-term cosine expansion in terms of the N-N dihedral angle. The shapes of these two potential curves are in close agreement. The torsional barriers in N(2)O(4) and N(2)O(3) obtained from the CCSD(T)/CBS//B3LYP/aug-cc-pVDZ calculations are 2333 and 1704 cm(-1), respectively. For N(2)O(4) the torsion fundamental frequency from the IRC potential is 87.06 cm(-1), which is in good agreement with the experimentally reported value of 81.73 cm(-1). However, in the case of N(2)O(3) the torsional frequency found from the IRC potential, 144 cm(-1), is considerably larger than the reported experimental values 63-76 cm(-1). Consistent with this discrepancy, the torsional barrier obtained from several different calculations, 1417-1718 cm(-1), is higher than the value of 350 cm(-1) deduced from experimental studies. It is suggested that the assignment of the torsional mode in N(2)O(3) should be reexamined. N(2)O(4) and N(2)O(3) exhibit strong hyperconjugative interactions of in-plane O lone pairs with the central N-N sigma* antibond. Hyperconjugative stabilization is somewhat stronger at the planar geometries because 1,4 interactions of lone pairs on cis O atoms promote delocalization of electrons into the N-N antibond. Calculations therefore suggest that the torsional barriers in these molecules arise principally from a combination of 1,4 interactions and hyperconjugation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号