首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Close-coupling study of rotational energy transfer and differential scattering in H2O collisions with He atoms
Authors:Yang Benhui  Stancil P C
Institution:Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA. yang@physast.uga.edu
Abstract:Quantum close-coupling scattering calculations of rotational energy transfer (RET) of rotationally excited H(2)O due to collisions with He are presented for collision energies between 10(-6) and 1000 cm(-1) with para-H(2)O initially in levels 1(1,1), 2(0,2), 2(1,1), and 2(2,0) and ortho-H(2)O in levels 1(1,0), 2(1,2), and 2(2,1). Quenching cross sections and rate coefficients for state-to-state RET were computed. Both elastic and inelastic differential cross sections are also calculated and compared with relative experimental results giving generally good agreement in all cases, but less so for inelastic results. Significant differences in the computed collisional parameters, obtained on three different potential energy surfaces (PESs), were found particularly in the ultracold regime. In the thermal regime, the rate coefficients calculated on each of the surfaces are generally in better agreement and comparable, but typically larger, than those obtained in a previous calculation. Unfortunately, a lack of absolute differential or integral inelastic experimental data prevents firm determination of a preferred PES.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号