Abstract: | Methyl β‐D‐mannopyranosyl‐(1→4)‐β‐D‐xylopyranoside, C12H22O10, (I), crystallizes as colorless needles from water, with two crystallographically independent molecules, (IA) and (IB), comprising the asymmetric unit. The internal glycosidic linkage conformation in molecule (IA) is characterized by a ϕ′ torsion angle (O5′Man—C1′Man—O1′Man—C4Xyl; Man is mannose and Xyl is xylose) of −88.38 (17)° and a ψ′ torsion angle (C1′Man—O1′Man—C4Xyl—C5Xyl) of −149.22 (15)°, whereas the corresponding torsion angles in molecule (IB) are −89.82 (17) and −159.98 (14)°, respectively. Ring atom numbering conforms to the convention in which C1 denotes the anomeric C atom, and C5 and C6 denote the hydroxymethyl (–CH2OH) C atom in the β‐Xylp and β‐Manp residues, respectively. By comparison, the internal glycosidic linkage in the major disorder component of the structurally related disaccharide, methyl β‐D‐galactopyranosyl‐(1→4)‐β‐D‐xylopyranoside), (II) [Zhang, Oliver & Serriani (2012). Acta Cryst. C 68 , o7–o11], is characterized by ϕ′ = −85.7 (6)° and ψ′ = −141.6 (8)°. Inter‐residue hydrogen bonding is observed between atoms O3Xyl and O5′Man in both (IA) and (IB) [O3Xyl...O5′Man internuclear distances = 2.7268 (16) and 2.6920 (17) Å, respectively], analogous to the inter‐residue hydrogen bond detected between atoms O3Xyl and O5′Gal in (II). Exocyclic hydroxymethyl group conformation in the β‐Manp residue of (IA) is gauche–gauche, whereas that in the β‐Manp residue of (IB) is gauche–trans. |