首页 | 本学科首页   官方微博 | 高级检索  
     


Donor states in tunnel-coupled quantum wells
Authors:F. T. Vas’ko  V. I. Pipa
Affiliation:(1) Institute of Semiconductor Physics, National Academy of Sciences, 252650 Kiev, Ukraine
Abstract:We study the energy spectrum of the impurity states in tunnel-coupled double quantum wells for Coulomb and short-range donor potentials. We calculate the impurity contribution and the density of states and detect the transformation of a localized donor state into a resonant state when the binding energy of the donor in an isolated quantum well is less than the separation of the energy levels of the double quantum wells. In the opposite case, where the binding energy is greater than the level separation, there is tunneling repulsion between adjacent impurity levels, with the degree of degeneracy of the levels changing when there is tunneling mixing of the ground and excited impurity states from different wells. Resonant states emerge in an asymmetric double quantum well, while in a symmetric double quantum well the impurity level at the barrier’s center proves to be localized even against the background of the continuum. The calculations are based on a general expression for the impurity contribution to the density of states in terms of a 2-by-2 matrix Green’s function, i.e., only a pair of tunnel-coupled levels of the double quantum wells is taken into account. For an impurity with a short-range potential, we derive a matrix generalization of the Koster-Slater solution, while the impurity with a Coulomb potential is analyzed by using the approximation of a narrow resonance and close arrangement of the repulsive levels. Zh. éksp. Teor. Fiz. 115, 1337–1352 (April 1999)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号