首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification
Authors:Vellaisamy Kumaresan  Ramalingam Velraj  Sarit K Das
Institution:1. Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai, 600 025, India
2. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600 036, India
Abstract:This study is aimed to prepare a novel class of nanofluid phase change material (NFPCM) by dispersing a small amount of multi-walled carbon nanotubes (MWCNT) in liquid paraffin, to enhance the heat transfer properties and examine the characteristics of the NFPCM during the solidification process. The stable NFPCMs are prepared by dispersing the MWCNT in liquid paraffin at 30°C with volume fractions of 0.15, 0.3, 0.45 and 0.6% without any dispersing agents. The rheology measurement illustrates the Newtonian fluid behavior in the shear stress range of 1–10?Pa. The differential scanning calorimetric results showed that there is no observable variation in the freezing/melting temperature of the NFPCM, and only a small observable change in the latent heat values. The thermal conductivity of various NFPCM is measured. The enhancement in thermal conductivity increases with the increased volume fraction of the MWCNT, and shows a weak dependence on the temperature. Further, for the NFPCM with a volume fraction of 0.6%, there is an appreciable increase in heat transfer with a reduction in the solidification time of 33.64%. The enhancement in the heat transfer performance would alleviate the major problems that have been encountered in the conventional phase change materials since several years.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号