首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Instantaneous Squeeze-Film Force Between a Heat Exchanger Tube and a Support Plate for Arbitrary Tube Motion
Authors:Y Lu  R J Rogers
Abstract:The instantaneous squeeze-film force between a heat exchanger tube and a support plate is studied. Based on a two-dimensional rectangular plate model, a short-sleeve squeeze-film model for arbitrary tube motion is developed. The instantaneous squeeze-film force is expressed in normal and tangential directions. The normal squeeze-film force consists of four nonlinear terms, the viscous, unsteady inertia, convective inertia and centripetal inertia terms. Three nonlinear terms, the viscous, unsteady inertia and Coriolis inertia terms, make up the tangential squeeze-film force. An experimental apparatus was developed in order to evaluate the theoretical models against measurements of a finite length squeeze film. A modified model based on the experimental data is obtained where the viscous terms for both directions are multiplied by the instantaneous Reynolds number. All the inertia terms are multiplied by constant coefficients. The modified model is in good agreement with most experimental cases for unsymmetrical linear motion, approximate circular motion and elliptical motion. The form of the modified model is suitable for predicting instantaneous squeeze-film forces in the simulation of heat exchanger tube vibration. Further work using different sized components and fluid properties is required in order to finalize coefficient values.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号