首页 | 本学科首页   官方微博 | 高级检索  
     


Junction configurations and their impacts on Cu(In,Ga)Se2 based solar cells performances
Authors:N. Guirdjebaye  S. Ouédraogo  A. Teyou Ngoupo  G.L. Mbopda Tcheum  J.M.B. Ndjaka
Affiliation:1. Département de Physique, Faculté des Sciences, Université de Yaoundé 1, BP 812, Yaoundé, Cameroon;2. Laboratoire des Matériaux et Environnement (LAME), UFR-SEA, Université de Ouagadougou, BP 7021, Ouaga 03, Burkina Faso
Abstract:One dimension solar cells simulator package (SCAPS) is used to study the possibility of carrying out thin CIGS solar cells with high and stable efficiency. In the first step, we modified the conventional ZnO:B/i-ZnO/CdS/SDL/CIGS/Mo structure by substituting the SDL layer with the P?+?layer, having a wide bandgap from 1 to l.12?eV. Then, we simulated the J-V characteristics of this new structure and showed how the electrical parameters are affected. Conversion efficiency of 18.46% is founded by using 1.1?μm of P?+?layer thickness. Secondly, we analyze the effect of increase thickness and doping density of CIGS, CdS and P?+?layers on the electric parameters of this new structure. We show that only the short-circuit current density (JSC) and efficiency are improved, reaching respectively 34.68?mA/cm2 and 18.85%, with increasing of the acceptors density. Finally, we introduced 10?nm of various electron reflectors at the CIGS/Mo interface in the new structure to reduce the recombination of minority carriers at the back contact. High conversion efficiency of 23.34% and better stability are obtained when wide band-gap BSF is used.
Keywords:Defect density  P+ layer  Back surface field  CIGS  SCAPS-1D
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号