首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Controlling the Conformational Changes in Donor–Acceptor [4]‐Dendralenes through Intramolecular Charge‐Transfer Processes
Authors:Alexander?L Kanibolotsky Dr  John?C Forgie  Greg?J McEntee  M?Munsif?A Talpur Dr  Peter?J Skabara Prof  Thomas?D?J Westgate Dr  Joseph?J?W McDouall Dr  Michael Auinger  Simon?J Coles Dr  Michael?B Hursthouse Prof
Institution:1. WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL (UK), Fax: (+44)?141‐548‐4822;2. On leave from: Department of Chemistry, Shah Abdul Latif University, KhairPur (Mir's), Sindh (Pakistan);3. School of Chemistry, University of Manchester, Manchester M13 9PL (UK);4. On leave from: Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Linz (Austria);5. Department of Chemistry, University of Southampton, Southampton SO17 1BJ (UK)
Abstract:The synthesis of two 4]‐dendralene compounds incorporating thiophene‐(p‐nitrophenyl) donor–acceptor units is presented. The dendralenes adopt two different conformers in solution and solid state and the transformation between the structures can be controlled by light and heat. The electron‐donating components of the dendralenes are represented by bromothienyl (in 13 ) and ethylenedioxythiophene(EDOT)‐thienyl (in 15 ) end‐groups. The most facile transformation involves the isomerisation of donor–acceptor conjugated systems ( a conformers) into structures in which only the thiophenes are conjugated ( b conformers), and this process is driven by ambient light. The structures of the two conformers of compound 13 are confirmed by single‐crystal X‐ray diffraction studies and the structural changes in both compounds have been monitored by 1H NMR spectroscopy and absorption studies. The transformations were found to be first‐order processes with rate constants of k=0.0027 s?1 and k=0.00022 s?1 for 13 and 15 , respectively. Density functional theory calculations at the B3LYP/6‐31G* level give credence to the proposed mechanism for the a → b conversion, which involves photoinduced intramolecular charge transfer (ICT) as the key step. The EDOT derivative ( 15 ) can be polymerised by electrochemical oxidation and a combination of cyclic voltammetry and UV/Vis spectroelectrochemical experiments indicate that the a conformer can be trapped and stabilised in the solid state.
Keywords:conformational isomerization  crystallography  dendralenes  electrochemistry  molecular modeling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号