首页 | 本学科首页   官方微博 | 高级检索  
     


Microsolvated and Chelated Butylzinc Cations: Formation,Relative Stability,and Unimolecular Gas‐Phase Chemistry
Authors:Julia E. Fleckenstein  Konrad Koszinowski Dr.
Affiliation:Department Chemie und Biochemie, Ludwig‐Maximilians‐Universit?t München, Butenandtstrasse 5–13, 81377 München (Germany), Fax: (+49)?89‐21809977658
Abstract:Solutions of butylzinc iodide in tetrahydrofuran, acetonitrile, and N,N‐dimethylformamide were analyzed by electrospray ionization mass spectrometry. In all cases, microsolvated butylzinc cations [ZnBu(solvent)n]+, n=1–3, were detected. The parallel observation of the butylzincate anion [ZnBuI2]? suggests that these ions result from disproportionation of neutral butylzinc iodide in solution. In the presence of simple bidentate ligands (1,2‐dimethoxyethane, N,N‐dimethyl‐2‐methoxyethylamine, and N,N,N′,N′‐tetramethylethylenediamine), chelate complexes of the type [ZnBu(ligand)]+ form quite readily. The relative stabilities of these complexes were probed by competition experiments and analysis of their unimolecular gas‐phase reactivity. Fragmentation of mass‐selected [ZnBu(ligand)]+ leads to the elimination of butene and formation of [ZnH(ligand)]+. In marked contrast, the microsolvated cations [ZnBu(solvent)n]+ lose the attached solvent molecules upon gas‐phase fragmentation to produce bare [ZnBu]+, which subsequently dissociates into [C4H9]+ and Zn. This difference in reactivity resembles the situation in organozinc solution chemistry, in which chelating ligands are needed to activate dialkylzinc compounds for the nucleophilic addition to aldehydes.
Keywords:gas‐phase reactions  ligand effects  mass spectrometry  solvent effects  zinc
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号