首页 | 本学科首页   官方微博 | 高级检索  
     

二维泊松方程的遗传PSOR改进算法
引用本文:彭武,何怡刚,方葛丰,樊晓腾. 二维泊松方程的遗传PSOR改进算法[J]. 物理学报, 2013, 62(2): 20301-020301. DOI: 10.7498/aps.62.020301
作者姓名:彭武  何怡刚  方葛丰  樊晓腾
作者单位:1. 湖南大学电气与信息工程学院,长沙,410082
2. 湖南大学电气与信息工程学院,长沙410082;合肥工业大学电气与自动化工程学院,合肥230009
3. 电子测试技术国防科技重点实验室,青岛,266555
基金项目:国家杰出青年科学基金(批准号: 50925727)、 国家自然科学基金(批准号: 60876022, 61102039, 51107034)、 湖南省科技计划项目(批准号: 2011J4, 2011JK2023)、 国防预研重大项目(批准号: C1120110004)、广东省教育部产学研计划(批准号: 2009B090300196) 和中央高校基本科研业务费资助的课题.
摘    要:针对二维泊松方程在实际应用过程中几种常用方法存在计算量大、易发散、局部收敛等不足,提出了一种改进算法.该算法基于并行超松弛迭代法,采用遗传算法对松弛因子进行全局寻优,解决了超松弛迭代法求解泊松方程时最佳松弛因子难以确定的问题.构建了多目标适应度函数,优化了遗传算子参数,分析了算法的计算量、计算时间与误差精度,与传统方法进行了对比研究.结果表明:松弛因子对泊松方程求解的速度与精度影响显著;改进算法能减少迭代次数,节省计算时间,加快方程的求解;算法适合于求解计算量较大、精度要求较高的时域有限差分方程,而且精度要求越高,算法的性能越好,节省的时间也越多.

关 键 词:泊松方程  遗传算法  并行超松弛迭代法  有限差分法
收稿时间:2012-05-27

An ameliorative algorithm of two-dimensional Poisson equation based on genetic parallel successive over-relaxation method
Peng Wu,He Yi-Gang,Fang Ge-Feng,Fan Xiao-Teng. An ameliorative algorithm of two-dimensional Poisson equation based on genetic parallel successive over-relaxation method[J]. Acta Physica Sinica, 2013, 62(2): 20301-020301. DOI: 10.7498/aps.62.020301
Authors:Peng Wu  He Yi-Gang  Fang Ge-Feng  Fan Xiao-Teng
Affiliation:1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China;2. School of Electrical and Automation Engineering, Hefei University of Technology, Hefei 230009, China;3. The 41st Research Institute of China Electronics Technology Group Corporation, Qingdao 266555, China
Abstract:There exist some disadvantages in the calculation of two-dimensional Poisson equation with several common methods. A new ameliorative algorithm is presented. It is based on a parallel successive over-relaxation (PSOR) method, by using the multi-objective genetic algorithm to search for optimal relaxation factor, with which the problem of optimal relaxation factor selection in PSOR is solved. The multi-objective fitness function is constructed, with which the genetic algorithm parameters are optimized. The analysis mainly focuses on algorithm computation, time cost and accuracy of error correction. The performance of the ameliorative algorithm is compared with those of Jacobi, Gauss-Seidel, Successive over relaxation iteration (SOR) and PSOR. Experimental results show that relaxation factor has a significant effect on the speed of solving Poisson equation, as well as the accuracy. The improved algorithm can increase the speed of iteration and obtain higher accuracy than traditional algorithm. It is suited for solving complicated finite difference time domain equations which need high accuracy. The higher the accuracy requirement, the better the performance of the algorithm is and the more computation time can also be saved.
Keywords:poisson equation  genetic algorithm  parallel successive over-relaxation method  finite difference method
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号