首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism and kinetics of the formation of zinc pack coatings
Authors:G. Vourlias  N. Pistofidis  K. Chrissafis  E. Pavlidou  G. Stergioudis
Affiliation:(1) Physics Department, Aristotle University of Thessaloniki, Thessaloniki, 54 124, Greece
Abstract:A zinc deposition method that could be used instead hot-dip galvanizing is pack cementation, where the substrate is heated immersed in a powder mixture containing Zn and a halide activator (NH4Cl). In the present work the mechanism of this process is examined, along with the effect of temperature and heating time on the coating thickness and structure. For this purpose the coating was deposited and characterized with SEM, while the deposition mechanism was investigated with DSC. From the above examination it was deduced that the deposition of Zn takes place with a multiple-step mechanism, which involves several reactions in the gaseous phase including the formation of volatile zinc halides and finally the diffusion of zinc in the crystal lattice of the ferrous substrate. This procedure is accomplished at about 300°C and leads to the growth of a coating composed by two layers referring to Γ and δ phase of the Fe-Zn system. The coating deposition rate seems to be controlled by the zinc diffusion as its determination at 300 and 350°C showed, where it was deduced that the coating thickness is a linear function of the square root of heating time. However the coating structure is not affected by the heating time and temperature.
Keywords:chemical vapor deposition  coating materials  DSC characterization  pack cementation  scanning electron microscopy  thermal analysis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号