首页 | 本学科首页   官方微博 | 高级检索  
     

亮氨酸拉链型脂肽对脂质体温敏性调节的分子模拟
引用本文:许谢君,肖兴庆,徐首红,刘洪来. 亮氨酸拉链型脂肽对脂质体温敏性调节的分子模拟[J]. 物理化学学报, 2019, 35(6): 598-606. DOI: 10.3866/PKU.WHXB201806034
作者姓名:许谢君  肖兴庆  徐首红  刘洪来
作者单位:1. State Key Laboratory of Chemical Engineering, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China;2. Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
基金项目:the National Natural Science Foundation of China(21776071);the National Natural Science Foundation of China for Innovative Research Groups(51621002);the 111 Project of China(B08021)
摘    要:含亮氨酸拉链型脂肽的温敏性脂质体被认为是抗癌药物的优良载体。亮氨酸拉链型脂肽的主要氨基酸残基序列为[VAQLEVK-VAQLESK-VSKLESK-VSSLESK],嵌入脂质体后可以有效改善脂质体的温敏性。本文首先采用隐式溶剂副本交换分子动力学方法,对N端修饰的亮氨酸拉链单链的折叠状态进行了模拟,得到了亮氨酸拉链单链的转变温度。并对包含该种新型亮氨酸拉链型脂肽的DPPC脂质体进行常规分子动力学模拟,研究了2种不同头基的亮氨酸拉链型脂肽(ALA,C3CO)二聚体嵌入后DPPC脂质体的相转变温度变化,证明了亮氨酸拉链型脂肽对于该脂质体温敏性的控制作用。利用这一规律,可以对亮氨酸拉链型脂肽进行优化改良,得到效果更佳的温敏脂质体,对于抗癌药物载体的开发有着重要的意义。

关 键 词:亮氨酸拉链  温敏脂质体  癌症治疗  药物载体  分子动力学模拟  
收稿时间:2018-06-19

Computational Study of Thermosensitivity of Liposomes Modulated by Leucine Zipper-Structured Lipopeptides
Xiejun XU,Xingqing XIAO,Shouhong XU,Honglai LIU. Computational Study of Thermosensitivity of Liposomes Modulated by Leucine Zipper-Structured Lipopeptides[J]. Acta Physico-Chimica Sinica, 2019, 35(6): 598-606. DOI: 10.3866/PKU.WHXB201806034
Authors:Xiejun XU  Xingqing XIAO  Shouhong XU  Honglai LIU
Affiliation:1. State Key Laboratory of Chemical Engineering, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China;2. Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
Abstract:Leucine zipper-functionalized liposomes are promising drug carriers for cancer treatment because of their unique thermosensitivity. The leucine zippers, which consist of two α-helical polypeptides that dimerize in parallel, have characteristic heptad repeats (represented by [abcdefg]n). A leucine residue was observed periodically at site "d" to stabilize the dimerization of the two polypeptides through inter-chain hydrophobic interactions. As the temperature increased, the inter-chain hydrophobic interactions became weaker, eventually triggering the dissociation of the leucine zippers. Due to the unique nature of the temperature response, leucine zippers are useful for developing novel lipid-peptide vesicles for drug delivery because they allow for better control and optimization of drug release under mild hyperthermia. The base sequence of the leucine zipper peptides used in our lab for the functionalize liposomal carrier is [VAQLEVK-VAQLESK-VSKLESK-VSSLESK]. Our recent experiments revealed that modifying this peptide at the N-terminus with distinct functional groups can change the physicochemical properties of the lipopeptides, and eventually affect the liposomes' phase transition behaviors. Four leucine zipper-structured lipopeptides with distinct head groups, viz. ALA, C3CO, C5CO, and POCH, were studied computationally to examine the influence of the molecular structures on the phase transition behaviors of lipopeptides. A series of computational techniques including quantum mechanics (QM) calculations, implicit solvation replica exchange molecular dynamics (REMD) simulations, dihedral principal component analysis (dPCA), and dictionary of protein secondary structure (DSSP) methods, and the conventional explicit solvation molecular dynamics (MD) simulations were applied in this work. First, QM calculations were conducted to obtain the partial charges of some modified head groups. Implicit-solvent REMD simulations were then performed to study the effect of temperature on the folded conformations of the leucine zipper peptides. The dPCA method was used to simulate trajectories to identify representative structures of the peptides at various temperatures, and the DSSP method was used to determine conformation transitions of the four lipopeptides ALA, C3CO, C5CO, and POCH at 324.8, 312.1, 319.1, and 319.4 K, respectively. The thermostability of the lipopeptide dimers in the lipid DPPC bilayer was studied in the conventional explicit solvent MD simulations. Finally, we conducted a deep analysis on the area per lipid and the electron-density profile for the DPPC bilayer to explore the folding and unfolding processes of the lipopeptides in the liposomes to better understand the underlying phase transition mechanisms of the thermosensitive liposomes. On this basis, we could further improve the thermosensitivity of the leucine zipper-structured lipopeptides, thereby facilitating the development of liposomal drug delivery techniques in the future.
Keywords:Leucine zipper-structured lipopeptides  Thermosensitive liposomes  Cancer therapy  Drug carrier  Molecular dynamics simulation  
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号