首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高分散纳米薄水铝石和纳米氧化铝的制备及其对甲基橙的吸附性能
引用本文:吴彩红,郑国源,王吉林,莫淑一,邹正光,龙飞.高分散纳米薄水铝石和纳米氧化铝的制备及其对甲基橙的吸附性能[J].无机化学学报,2019,35(3):449-458.
作者姓名:吴彩红  郑国源  王吉林  莫淑一  邹正光  龙飞
作者单位:桂林理工大学材料科学与工程学院有色金属及材料加工新技术教育部重点实验室;桂林理工大学广西有色金属隐伏矿床勘查及材料开发协同创新中心
基金项目:国家自然科学基金项目(No.51672052)和广西‘特聘专家’专项经费资助项目
摘    要:以硝酸铝为铝源,尿素为沉淀剂,采用无模板水热法合成纳米薄水铝石(γ-AlO(OH))。在不同温度下煅烧后,得到氧化铝产物(γ-Al2O_3和θ-Al2O_3)。利用X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、氮气吸附-脱附法和紫外-可见分光光度计(UV-Vis)对产物进行了表征分析。并且研究了产物对甲基橙(MO)的吸附性能,系统地考察了吸附时间、溶液的pH值、甲基橙浓度及循环使用对产物吸附性能的影响。此外,还对吸附过程进行了相关吸附理论研究。结果表明:与其他方法所制备的产物相比,通过该方法获得的产物的分散性更高,形态更均匀和完整。产物为高度分散的纳米捆扎状结构。γ-AlO(OH)对甲基橙的最大吸附量达1 492.5 mg·g~(-1)。另外,产物的吸附机制包含化学作用吸附机制和静电作用吸附机制等。3种产物对甲基橙的吸附均符合Langmuir单分子层吸附模型,吸附过程均符合二级动力学特征。

关 键 词:材料学  薄水铝石  水热法  氧化铝  甲基橙  吸附  高分散纳米结构
收稿时间:2018/10/3 0:00:00
修稿时间:2019/1/10 0:00:00

Preparation and Adsorption Properties for Methyl Orange of Highly Dispersed Boehmite and Alumina Nanostructures
WU Cai-Hong,ZHENG Guo-Yuan,WANG Ji-Lin,MO Shu-Yi,ZOU Zheng-Guang and LONG Fei.Preparation and Adsorption Properties for Methyl Orange of Highly Dispersed Boehmite and Alumina Nanostructures[J].Chinese Journal of Inorganic Chemistry,2019,35(3):449-458.
Authors:WU Cai-Hong  ZHENG Guo-Yuan  WANG Ji-Lin  MO Shu-Yi  ZOU Zheng-Guang and LONG Fei
Institution:School of Materials Science and Engineering, Key Laboratory of Nonferrous Materials and New Processing Technology of Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004, China;Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin University of Technology, Guilin, Guangxi 541004, China,School of Materials Science and Engineering, Key Laboratory of Nonferrous Materials and New Processing Technology of Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004, China;Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin University of Technology, Guilin, Guangxi 541004, China,School of Materials Science and Engineering, Key Laboratory of Nonferrous Materials and New Processing Technology of Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004, China;Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin University of Technology, Guilin, Guangxi 541004, China,School of Materials Science and Engineering, Key Laboratory of Nonferrous Materials and New Processing Technology of Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004, China;Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin University of Technology, Guilin, Guangxi 541004, China,School of Materials Science and Engineering, Key Laboratory of Nonferrous Materials and New Processing Technology of Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004, China;Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin University of Technology, Guilin, Guangxi 541004, China and School of Materials Science and Engineering, Key Laboratory of Nonferrous Materials and New Processing Technology of Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004, China;Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin University of Technology, Guilin, Guangxi 541004, China
Abstract:
Keywords:materials science  boehmite  hydrothermal method  aluminum oxide  methyl orange  adsorption  highly dispersed nanostructure
本文献已被 CNKI 等数据库收录!
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号