首页 | 本学科首页   官方微博 | 高级检索  
     

多元线性回归提高激光诱导荧光辅助激光诱导击穿光谱技术的准确度
引用本文:吴杰,李创锴,陈文骏,黄妍鑫,赵楠,李嘉铭,杨焕,李祥友,吕启涛,张庆茂. 多元线性回归提高激光诱导荧光辅助激光诱导击穿光谱技术的准确度[J]. 光谱学与光谱分析, 2022, 42(3): 795-801. DOI: 10.3964/j.issn.1000-0593(2022)03-0795-07
作者姓名:吴杰  李创锴  陈文骏  黄妍鑫  赵楠  李嘉铭  杨焕  李祥友  吕启涛  张庆茂
作者单位:1. 华南师范大学,广东省微纳光子功能材料与器件重点实验室,广东 广州 510006
2. 华南师范大学,省部共建光信息物理与技术国家重点实验室,广东 广州 510006
3. 深圳技术大学,中德智能制造学院,广东 深圳 518118
4. 华中科技大学,武汉光电国家研究中心,湖北 武汉 430074
5. 广东省工业超短脉冲激光技术企业重点实验室,广东 深圳 518055
基金项目:国家重点研发计划项目(2017YFB1104500);;国家自然科学基金项目(62005081);;广东省重点领域研发计划项目(2020B090922006);;广东省基础与应用基础研究基金项目(2020A1515110985,2019A1515111120);;广州市科技计划项目(202002030165);
摘    要:冶金、核工业、污染检测和环境监测等领域对元素分析的需求是必不可少.激光诱导击穿光谱技术作为一种新型的原子光谱分析技术,具有实时快速、对样品几乎无损、可多元素同时分析等特点,因此一直受到广泛的关注.但其分析灵敏度较差的缺点一直限制着该技术的发展.激光诱导荧光辅助激光诱导激光光谱技术能够通过激光共振激发提高分析灵敏度并高效...

关 键 词:激光诱导激光光谱  激光诱导荧光  多元线性回归
收稿时间:2021-03-05

Multiple Liner Regression for Improving the Accuracy of Laser-Induced Breakdown Spectroscopy Assisted With Laser-Induced Fluorescence (LIBS-LIF )
WU Jie,LI Chuang-kai,CHEN Wen-jun,HUANG Yan-xin,ZHAO Nan,LI Jia-ming,YANG Huan,LI Xiang-you,Lü Qi-tao,ZHANG Qing-mao. Multiple Liner Regression for Improving the Accuracy of Laser-Induced Breakdown Spectroscopy Assisted With Laser-Induced Fluorescence (LIBS-LIF )[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 795-801. DOI: 10.3964/j.issn.1000-0593(2022)03-0795-07
Authors:WU Jie  LI Chuang-kai  CHEN Wen-jun  HUANG Yan-xin  ZHAO Nan  LI Jia-ming  YANG Huan  LI Xiang-you  Lü Qi-tao  ZHANG Qing-mao
Abstract:Elemental analysis is an essential requirement in the metallurgical industry, nuclear industry, pollution detection and environmental monitoring. As a new type of atomic spectrum analysis technology, LIBS has been widely concerned because of its real-time, fast, almost non-destructive and multi-element simultaneous analysis. However, its poor analytical sensitivity has restricted the development of this technology. LIBS-LIF can improve the sensitivity of analysis and efficiently detect the element types of samples through laser resonance excitation. The spectrometer can collect spectral information and a model can be established to predict the concentration of unknown samples. However, when the characteristic spectral lines of the matrix atom and the target atom are very close, the matrix spectral lines will be affected, and the unary calibration accuracy will decrease. In this paper, linear models of Ni and Cr elements in steel were established using linear fitting with one variable and linear fitting with multiple variables. Firstly, the peak spectral line in the sample spectral map is selected to find whether it is the characteristic spectral line corresponding to the element to be measured or the collective element. After selecting suitable characteristic spectral lines, the spectral intensities of multiple spectral lines and the concentrations of the elements to be measured in the sample were used as a multivariate linear fitting model, and the fitting coefficients corresponding to each spectral line were ranked from highest to lowest, and the contribution of the spectral intensities corresponding to each characteristic spectral line in the multivariate linear fitting model to the concentration prediction was taken as the criterion from highest to lowest, and the fitting dimension was increased continuously. The mean relative errors of the regression models for Ni and Cr elemental content were reduced from 38% to about 10% and 55% to within 25%, respectively, and the root mean square error values of the cross-validation of the linear regression models for Ni and Cr elemental content were reduced from 3.4% to 2% and 2.5%, respectively, with the increase of dimensionality. and 2.5% to 1.5% for Ni and Cr, respectively. In this paper, the method of selecting multiple spectral lines to establish a multiple linear regression model is relatively effective in reducing the influence of excitation interference, and it puts forward a feasible scheme for promoting the practical application of laser-induced fluorescence assisted laser-induced laser spectroscopy technology in element analysis.
Keywords:Laser-induced breakdown spectroscopy  Laser-induced Fluorescence  Multiple linear regression  
本文献已被 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号