首页 | 本学科首页   官方微博 | 高级检索  
     

金属纳米球-纳米圆盘结构中表面等离激元共振模式的电磁场增强研究
引用本文:李梦君,方晖. 金属纳米球-纳米圆盘结构中表面等离激元共振模式的电磁场增强研究[J]. 光谱学与光谱分析, 2022, 42(4): 1098-1103. DOI: 10.3964/j.issn.1000-0593(2022)04-1098-06
作者姓名:李梦君  方晖
作者单位:1. 唐山师范学院物理科学与技术学院,河北 唐山 063000
2. 深圳大学微纳光电子学研究院/纳米光子学研究中心,深圳市微尺度光信息技术重点实验室,广东 深圳 518060
基金项目:国家重点基础研究发展计划项目(2015CB352004);;唐山市科学技术研究与发展计划项目(20130220b);;唐山师范学院科学研究基金项目(2019A07)资助;
摘    要:表面等离激元自诞生以来已有一百多年的历史,并逐渐形成了一门新的学科——表面等离激元光子学.位于金属纳米结构中的局域表面等离激元可产生非常显著的近表面电场增强,并成功应用于诸多研究领域当中,而对局域表面等离激元与外界入射光中磁场的相互作用的研究则相对较少.该研究在前期已有的研究基础之上模拟计算了金属纳米球-纳米圆盘结构间...

关 键 词:微纳光学  金属纳米球-纳米圆盘  表面等离激元共振  电磁场增强
收稿时间:2021-03-15

Research of Electromagnetic Field Enhancement of Surface Plasmon Resonant Mode in Metal Nanosphere-Nanodisc Structure
LI Meng-jun,FANG Hui. Research of Electromagnetic Field Enhancement of Surface Plasmon Resonant Mode in Metal Nanosphere-Nanodisc Structure[J]. Spectroscopy and Spectral Analysis, 2022, 42(4): 1098-1103. DOI: 10.3964/j.issn.1000-0593(2022)04-1098-06
Authors:LI Meng-jun  FANG Hui
Affiliation:1. College of Physics Science and Technology, Tangshan Normal University, Tangshan 063000, China2. Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University,Shenzhen 518060, China
Abstract:Surface plasmon has a history of more than one hundred years since its birth and has been a brand new discipline-plasmonics. Localized surface plasmon in metal nanostructures can gain very strong near-surface electric field enhancement and has been applied to many types researches successfully. However, there is relatively less study of the interaction between localized surface plasmon and magnetic field in incident light. This paper calculates the near-surface electromagnetic field enhancement of metal nanosphere-nanodisc gap based on the previous achievement. This paper shows that under the excitation of the single tightly radially polarized optical beam, the metal nanodisc can produce localized surface plasmon breathing mode and electric dipole moment mode, which give rise to the longitudinal electric field enhancement at the nanodisc center. And then, because of the resonance interaction of the metal nanodisc and localized surface plasmon electric dipolar moment of the metal nanosphere, a gap mode of localized surface plasmon resonance with efficient longitudinal electric field enhancement can be produced. Through carrying out the numerical simulation, this paper demonstrates that the near-surface longitudinal electric field of metal nanostructure gap mode can obtain 250 times electrical field enhancement relative to the valid transverse electrical field that is used to excite the breathing mode, and the enhancement factor of near-surface magnetic field could be 170. In order to present more clearly the character of the spectrum and the near-surface electromagnetic field distribution of this new metal nanostructure, the near-surface electromagnetic field distribution and the resonant wavelengths of this new metal nanostructure are also studied. The calculation results show that the proposed metal nanosphere-nanodisc nanostructure owns an obvious advantage on the local near-surface electromagnetic field enhancement and a relatively large frequency spectrum. Due to the electromagnetic field enhancement advantage of the metal nanostructure proposed by this paper, the future is not without hope that the results here could be applied to more and more researches, especially biomedicine, and provide a bit of reference in order to fight for novel coronavirus.
Keywords:Micro-nano optics   Metal nanosphere-nanodisc   Surface plasmon resonance   Electromagnetic field enhancement  
本文献已被 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号