首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design of efficient methanol impermeable membranes for fuel cell applications
Authors:Lufrano F  Baglio V  Di Blasi O  Staiti P  Antonucci V  Aricò A S
Institution:CNR-ITAE, Istituto di Tecnologie Avanzate per l'Energia Nicola Giordano, Via Salita S. Lucia sopra Contesse n. 5, 98126 S. Lucia, Messina, Italy.
Abstract:In this paper, the design of efficient composite membranes based on sulfonated polysulfone and acidic silica material with characteristics and properties such as methanol barrier, high proton conductivity and suitable fuel cells performance is presented. A positive influence of nanosized acidic silica powders, used as an additive filler in the preparation of composite membranes, due to an efficient hydrophilic inter-distribution inside the membrane when compared to pure silica, is found. A series of different techniques such as XRF, FT-IR, TGA, DSC, IEC and conductivity measurements are used to highlight the properties of acidic silica material and composite membranes. The composite membrane based on acidic silica (SPSf-SiO(2)-S) shows the lowest crossover current (only 8 mA cm(-2)), which is 43% lower than that of a pure SPSf membrane and 33% lower compared to a composite membrane based on bare silica (SPSf-SiO(2)). These significant differences are attributed to the increasing diffusion path length of MeOH/H(2)O clusters in the composite membranes. The maximum DMFC performance at 30 °C is achieved with the SPSf-SiO(2)-S membrane (23 mW cm(-2)), whereas the MEAs based on SPSf-SiO(2) and pure SPSf membranes reached 21 and 16 mW cm(-2), respectively. These significant results of the composite SPSf-SiO(2)-S membrane are ascribed at a good compromise among high proton conductivity, low swelling and low methanol crossover compared to pure SPSf and (unmodified silica)-SPSf membranes. A preliminary short durability test of 100 h performed in a cell with the composite SPSf-SiO(2)-S membrane shows remarkable performance stability during chrono-voltammetric measurements (60 mA cm(-2)) at 30 °C.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号