首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis and redox characteristics of iron complexes with triphenylsubstituted corrols in the presence of argon and oxygen
Authors:N M Berezina  Vu Thi Thao  D B Berezin  M I Bazanov
Institution:1.Ivanovo State University of Chemistry and Technology,Research Institute of Macroheterocycles,Ivanovo,Russia
Abstract:para-Substituted iron meso-triphenylcorrole derivatives Fe(ms-p-R-Ph)3Cor] containing electron- donating (R = OMе) and electron-drawing (R = NO2) groups in phenyl rings are synthesized and characterized by 1H NMR, electronic absorption spectroscopy, and mass spectrometry. The effect of the nature of functional groups within iron complexes on the redox processes involving these complexes in water–alkaline solutions is analyzed. Electronic transitions in the ligand (Ered/ox = 0.820–0.850 V) and the metal (Ered/ox =–0.005 to–0.190 and–0.790 to–0.870 V for the Fe4+ ? Fe3+ and Fe3+ ? Fe2+ transitions, respectively) were found in the cyclic voltammograms. Iron in the synthesized complexes IIV under the conditions under study exists in the +4 oxidation state. The activity of iron complexes in electroreduction of molecular oxygen significantly depends on the nature of a substituent, increases in the series: Fe(ms-p-NO2Ph)3Cor (II) < Fe(ms-p-MeOPh)3Cor (I) < Fe(β-Br)8(ms-Ph)3Cor (IV) < Fe(ms-Ph)3Cor (II) and is caused by the fact that low-energy redox electron transitions occur in the molecules. The electrocatalytic activity of iron corroles is much higher than that of metal porphyrins with a similar structure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号