首页 | 本学科首页   官方微博 | 高级检索  
     


A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation
Authors:Morton E. Gurtin
Affiliation:Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Abstract:This work is an attempt to answer the question:
Is there a physically natural method of characterizing the possible interactions between the slip systems of two grains that meet at a grain boundary—a method that could form the basis for the formulation of grain-boundary conditions?
Here we give a positive answer to this question based on the notion of a Burgers vector as described by a tensor field G on the grain boundary [Gurtin, M.E., Needleman, A., 2005. Boundary conditions in small-deformation single-crystal plasticity that account for the Burgers vector. J. Mech. Phys. Solids 53, 1-31]. We show that the magnitude of G can be expressed in terms of two types of moduli: inter-grain moduli that characterize slip-system interactions between the two grains; intra-grain moduli that for each grain characterize interactions between any two slip systems of that grain.We base the theory on microscopic force balances derived using the principle of virtual power, a version of the second law in the form of a free-energy imbalance, and thermodynamically compatible constitutive relations dependent on G and its rate. The resulting microscopic force balances represent flow rules for the grain boundary; and what is most important, these flow rules account automatically—via the intra- and inter-grain moduli—for the relative misorientation of the grains and the orientation of the grain boundary relative to those grains.
Keywords:Crystal plasticity   Grain boundaries   Gradient plasticity   Grain misorientation   Principle of virtual power
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号