首页 | 本学科首页   官方微博 | 高级检索  
     


One, no one, and one hundred thousand crack propagation laws: A generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth
Authors:Michele Ciavarella  Marco Paggi
Affiliation:a Politecnico di Bari, V.le Japigia 182, 70125 Bari, Italy
b Politecnico di Torino, Department of Structural Engineering and Geotechnics, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Abstract:Barenblatt and Botvina with elegant dimensional analysis arguments have elucidated that Paris’ power-law is a weak form of scaling, so that the Paris’ parameters C and m should not be taken as material constants. On the contrary, they are expected to depend on all the dimensionless parameters of the problem, and are really “constants” only within some specific ranges of all these. In the present paper, the dimensional analysis approach by Barenblatt and Botvina is generalized to explore the functional dependencies of m and C on more dimensionless parameters than the original Barenblatt and Botvina, and experimental results are interpreted for a wider range of materials including both metals and concrete. In particular, we find that the size-scale dependencies of m and C and the resulting correlation between C and m are quite different for metals and for quasi-brittle materials, as it is already suggested from the fact the fatigue crack propagation processes lead to m=2-5 in metals and m=10-50 in quasi-brittle materials. Therefore, according to the concepts of complete and incomplete self-similarities, the experimentally observed breakdowns of the classical Paris’ law are discussed and interpreted within a unified theoretical framework. Finally, we show that most attempts to address the deviations from the Paris’ law or the empirical correlations between the constants can be explained with this approach. We also suggest that “incomplete similarity” corresponds to the difficulties encountered so far by the “damage tolerant” approach which, after nearly 50 years since the introduction of Paris’ law, is still not a reliable calculation of damage, as Paris himself admits in a recent review.
Keywords:Fatigue crack growth   Paris&rsquo   law parameters   Dimensional analysis   Complete and incomplete self-similarity   Size-scale effects
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号