首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modal interaction in chaotic vibrations of a shallow double-curved shell-panel
Authors:S Maruyama  Y Tsuruta
Institution:a Department of Mechanical System Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
b Fujitsu Ten Limited, 1-2-28 Gosho-dori, Hyogo-ku, Kobe, Hyogo 652-8510, Japan
Abstract:Experimental results and analytical results are presented on chaotic vibrations of a shallow double-curved shell-panel subjected to gravity and periodic excitation. Modal interactions in the chaotic responses are discussed. The shell-panel with square boundary is simply supported for deflection. In-plane displacement at the boundary is elastically constrained. In the experiment, time histories of the chaotic responses at the spatial multiple positions of the shell-panel are measured for the inspection of modal interaction. In the analysis, the shallow shell-panel is assumed to have constant curvatures along to orthogonal directions and geometric initial imperfection. The Donnell-Mushtari-Vlasov type equation is used as governing equation with lateral inertia force. Assuming deflection with multiple modes of vibration, the governing equation is reduced to a set of nonlinear ordinary differential equations by the Bubnov-Galerkin procedure. Chaotic responses are integrated numerically. The chaotic responses, which are obtained by the experiment and the analysis, are inspected with the Fourier spectra, the Poincaré projections, the maximum Lyapunov exponents and the Lyapunov dimension. Contribution of modes of vibration to the chaotic responses is analyzed by the principal component analysis, i.e., Karhunen-Loève transformation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号