首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modulation equations and parabolic limits of reaction random-walk systems
Authors:Johannes Müller  Thomas Hillen
Abstract:Reaction random-walk systems are hyperbolic models to describe spatial motion (in one dimension) with finite speed and reactions of particles. Here we present two approaches which relate reaction random-walk equations with reaction diffusion equations. First, we consider the case of high particle speeds (parabolic limit). This leads to a singular perturbation analysis of a semilinear damped wave equation. A initial layer estimate is given. Secondly, we consider the case of a transcritical bifurcation. We use techniques similar to that of the Ginzburg–Landau method to find a modulation equation for the amplitude of the first unstable mode. It turns out that the modulation equation is Fisher's equation, hence near the bifurcation point travelling wave solutions are obtained. The approximation result and the corresponding estimate is given in terms of the bifurcation parameter. Both results are based on an a priori estimate for classical solutions which follows from explicit representations of the solution of the linear telegraph equation. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号