首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrothermal C-C bond formation and disproportionation of acetaldehyde with formic acid
Authors:Morooka Saiko  Matubayasi Nobuyuki  Nakahara Masaru
Affiliation:Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
Abstract:Reaction pathways and kinetics of C2 (carbon-two) aldehyde, acetaldehyde (CH3CHO), and formic acid HCOOH or HOCHO, are studied in neutral and acidic subcritical water at 200-250 degrees C. Acetaldehyde is found to exhibit (i) the acid-catalyzed C-C bond formation between acetaldehyde and formic acid, which generates lactic acid (CH3CH(OH)COOH), (ii) the cross-disproportionation, where formic acid reduces acetaldehyde into ethanol, and (iii) the aldol condensation. The lactic acid formation is a green C-C bond formation, proceeding without any organic solvents or metal catalysts. The new C-C bond formation takes place between formic acid and aldehydes irrespective of the presence of alpha-hydrogens. The hydrothermal cross-disproportionation produces ethanol without base catalysts and proceeds even in acidic condition, in sharp contrast to the classical base-catalyzed Cannizzaro reaction. The rate constants of the reactions (i)-(iii) and the equilibrium constant of the lactic acid formation are determined in the temperature range of 200-250 degrees C and at HCl concentrations of 0.2-0.6 M (mol/dm(3)). The reaction pathways are controlled so that the lactic acid or ethanol yield may be maximized by tuning the reactant concentrations and the temperature. A high lactic acid yield of 68% is achieved when acetaldehyde and formic acid are mixed in hot water, respectively, at 0.01 and 2.0 M in the presence of 0.6 M HCl at 225 degrees C. The ethanol yield attained 75% by the disproportionation of acetaldehyde (0.3 M) and formic acid (2.0 M) at 225 degrees C in the absence of added HCl.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号