首页 | 本学科首页   官方微博 | 高级检索  
     检索      


States of molecular assembly and physical properties of crystalline long-chain compounds studied by vibrational spectroscopy
Authors:Masamichi Kobayashi  Tohru Kobayashi  Yonghae Cho  Fumitoshi Kaneko
Abstract:Various types of molecular assembly of long-chain compounds in solid states were investigated by means of infrared absorption, Raman and Brillouin spectroscopic methods. As for the polymorphism in even-numbered n-fatty acids, three monoclinic modifications, B, C, and E, all consisting of the orthorhombic polyethylene sublattice, give rise to their characteristic infrared and Raman spectra. A dynamical equilibrium between cis and trans conformations of the hydrogen-bonded carboxyl groups in modification C, which is related to the high-temperature stable character of this phase, is reflected to a dramatic change with temperature in the low-frequency Raman spectra. A new type of reversible solid state phase transition was found between two A-type (triclinic) modifications of myristic, palmitic, and stearic acids. The γ→α phase transition of oleic acid was found to be caused by a conformational disordering of polymethylene chains at the lamellar interfacial region. Two basic polytype structures, Mon and Orth II, of stearic acid B were investigated, and it was found that the low-frequency phonon frequencies (below 50 cm−1) were strongly influenced by the polytype structure. Based on the spectroscopic considerations, Orth II was predicted as the thermodynamically stable phase around room temperature compared with Mon, and the stability is responsible for the vibrational free energy term. Some experimental findings which support this prediction were obtained. The values of the stiffness tensor elements of Mon and Orth II, measured by Brillouin scattering, indicate that the mechanical behavior of bulk crystals is very dependent on the polytype structure. The relationship between the mobility of chain molecules and the width of the spectral bands was investigated in a quantitative manner for the case of n-alkane molecules entrapped in the urea inclusion adducts. The changes in the half-width for the polarization components of various Raman bands on the transition from the orthorhombic to the hexagonal phase are interpreted in terms of the correlation functions of the Raman tensor related to the rotational motion of the alkane molecules around the chain axes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号