首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host
Authors:Bush Meghan E  Bouley Nicole D  Urbach Adam R
Institution:Department of Chemistry, Trinity University, San Antonio, TX 78212, USA.
Abstract:The molecular recognition of peptides and proteins in aqueous solution by designed molecules remains an elusive goal with broad implications for basic biochemical research and for sensors and separations technologies. This paper describes the recognition of N-terminal tryptophan in aqueous solution by the synthetic host cucurbit8]uril (Q8). Q8 is known to form 1:1:1 heteroternary complexes with methyl viologen (MV) and a second aromatic guest. Here, the complexes of Q8.MV with (i) the four natural aromatic alpha-amino acids, (ii) four singly charged tryptophan derivatives, and (iii) four tryptophan-containing tripeptides were characterized by isothermal titration calorimetry, mass spectrometry, and UV-visible, fluorescence, and (1)H NMR spectroscopy. We find that Q8.MV binds Trp-Gly-Gly with high affinity (K(a) = 1.3 x 10(5) M(-1)), with 6-fold specificity over Gly-Trp-Gly, and with 40-fold specificity over Gly-Gly-Trp. Analysis of the nine indole-containing compounds suggests that peptide recognition is mediated by the electrostatic charge(s) proximal to the indole, and that the mode of binding is consistent for these compounds. Complex formation is accompanied by the growth of a visible charge-transfer band and the quenching of indole fluorescence. These optical properties, combined with the stability and selectivity of this system, are promising for applications in sensing and separating specific peptides.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号