首页 | 本学科首页   官方微博 | 高级检索  
     检索      


NMR study of local hole distribution, spin fluctuation and superconductivity in Tl2Ba2Ca2Cu3O10
Authors:Guo-qing Zheng  Yoshio Kitaoka  Kunisuke Asayama  K Hamada  H Yamauchi and S Tanaka
Institution:

a Department of Material Physics, Osaka University, Osaka 560, Japan

b Superconductivity Research Laboratory, ISTEC, Koto-Ku, Tokyo 135, Japan

Abstract:63Cu, 17O and 205Tl NMR have been performed in the high-Tc superconductor Tl2Ba2Ca2Cu3O10 whose Tc(max) is 127 K. The hole densities at Cu and oxygen sites in the CuO2 plane have been extracted from the nuclear quadrupole frequency νQ. The striking feature is that the Cu holes are significantly transferred to oxygen site due to strong hybridization between Cu and oxygen. From an analysis of T1 and T2G, it has been found that the spectral weight of the spin fluctuation is transferred to higher energy compared to YBa2Cu3O7, while the magnetic correlation length ξ does not differ much. Thus, it is suggested that the higher Tc is due to higher characteristic energy of spin fluctuations, i.e. the superconductivity is spin fluctuation mediated. The superconducting properties are consistently explained by a d-wave superconductivity model with a finite density of states (DOS) at the Fermi level. We show that the disorder of the Ca/TlO layer caused by the partial inter-substitution of Tl and Ca is responsible for the potential scattering to produce such a DOS. It is found that if such a potential scattering were absent, Tc would go up to 132 K which is quite close to the record Tc realized in the Hg based compound.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号