首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetogravitational Stability of Resistive Plasma through Porous Medium with Thermal Conduction and FLR Corrections
Authors:D S Vaghela  R K Chhajlani
Abstract:The problem of stability of self gravitating magnetized plasma in porous medium is studied incorporating electrical resistivity, thermal conduction and FLR corrections. Normal mode analysis is applied to derive the dispersion relation. Wave propagation is discussed for parallel and perpendicular directions to the magnetic field. Applying Routh Hurwitz Criterion the stability of the medium is discussed and it is found that Jeans' criterion determines the stability of the medium. Magnetic field, porosity and resistivity of the medium have no effect on Jeans' Criterion in longitudinal direction. For perpendicular direction, in case of resistive medium Jeans' expression remains unaffected by magnetic field but for perfectly conducting medium magnetic field modifies the Jeans' expression to show the stabilizing effect. Thermal conducitivity affects the sonic mode by making the process isothermal instead of adiabatic. Porosity of the medium is effective only in case of perpendicular direction to magnetic field for perfectly conducting plasma as it reduces the stabilizing effect of magnetic field. For longitudinal wave propagation, though FLR corrections have no effect on sonic mode but it changes the growth rate for Alfvén mode. For transverse wave propagation FLR corrections and porosity affect the Jeans' expression in case of nonviscous medium but viscosity of the medium removes the effect of FLR and porosity on Jeans' condition.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号