首页 | 本学科首页   官方微博 | 高级检索  
     检索      


ORIENTATION MOVEMENTS OF CHLOROPLASTS IN Vallisneria EPIDERMAL CELLS: DIFFERENT EFFECTS OF LIGHT AT LOW- and HIGH-FLUENCE RATE*
Authors:Yasuhiko Izutani  Shingo Takagi  Reiko Nagai
Abstract:Abstract— Epidermal cells of Vallisneria gigantea have a large central vacuole which is surrounded by a thin layer of cytoplasm. The chloroplasts are distributed over all six cytoplasmic layers of an approximate cuboid. In low-intensity light, the accumulation of chloroplasts in the side facing the outer periclinal wall (the P side) continues for several hours. Red light (650 nm) shows the highest effect and induces such an accumulation even at a fluence rate of only 0.02 W/m2. In response to high-intensity light, the chloroplasts move to the sides that face the anticlinal walls (the A sides) within a few tens of minutes. Blue light (450 nm) is most effective in inducing this movement. At a fluence rate of 1.51 W/m2, the reaction is induced in only half of the specimens. Neither red nor blue light can induce any orientation movement in the presence of 100 μg/ml of cytochalasin B. The chloroplast movements in the P side have been examined with a time-lapse video system. When cells, in which the chloroplast accumulation has been completed after red-light irradiation, are subsequently irradiated with blue light, the rapid movement of chloroplasts to A sides is induced. However, a considerable number of chloroplasts remains in the center of the P side. The same is true of cells in which the chloroplasts have not accumulated in the P side because of cytochalasin B treatment during red-light irradiation, when such cells are irradiated with blue light after removal of the drug. Some anchoring mechanism seems to work in low-intensity light to render the chloroplasts immobile in the P side.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号